IONOSPHERIC MODELS

DAVID ANDERSON
CIRES/SEC
OUTLINE

• CURRENT MODELS

• INPUTS REQUIRED

• PRODUCTS AND OUTPUTS FOR USERS

• HOW NASA CAN HELP

• WHAT LWS SHOULD SUPPLY
CURRENT IONOSPHERIC MODELS

RESEARCH

- Global Theoretical Ionospheric Model (GTIM)
- Field Line Interhemispheric Plasma Model (FLIP)
- USU model of the global ionosphere
- A Coupled Thermosphere-Ionosphere-Plasmasphere Model (CTIP)
- Thermosphere-Ionosphere-Mesosphere-Electrodynamical-General Circulation Model (TIME-GCM)

OPERATIONAL

- Parameterized Real-time Ionospheric Specification Model (PRISM)
- Ionospheric Forecast Model (IFM)
- Coupled Ionosphere-Thermosphere Forecast Model (CITFM)
MODEL INPUT REQUIREMENTS

<table>
<thead>
<tr>
<th>RESEARCH</th>
<th>OPERATIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• E X B drifts at low and high latitudes (1)</td>
<td>• Ionospheric densities, peak parameters and TEC (1) for PRISM</td>
</tr>
<tr>
<td>• Meridional neutral winds at mid latitudes (1)</td>
<td>• E X B drifts, neutral winds, particle precipitation (1) for IFM and CITFM</td>
</tr>
<tr>
<td>• High latitude energetic particle precipitation (1)</td>
<td>• Kp, F10.7, Ap, IMF (1)</td>
</tr>
<tr>
<td>• Neutral atmosphere for uncoupled models (1)</td>
<td></td>
</tr>
<tr>
<td>• Solar EUV radiation fluxes (2)</td>
<td></td>
</tr>
<tr>
<td>• Electron and ion temperatures (3)</td>
<td></td>
</tr>
<tr>
<td>• Zonal neutral winds (4)</td>
<td></td>
</tr>
<tr>
<td>• Lower atmosphere tides (1)</td>
<td></td>
</tr>
<tr>
<td>• Kp, F10.7, Ap, IMF (1)</td>
<td></td>
</tr>
</tbody>
</table>
Future Data: IMAGE Satellite

NASA Explorer Series Satellite Operational in February, 2000

- Energetic Neutral Atom Imagers
- Far Ultraviolet Imager
- Extreme Ultraviolet Imager
- Radio Plasma Imager

Multiple Ground Stations to Provide Real-Time Data

Products from IMAGE

- Auroral Oval - Situational Awareness
- Auroral Oval - Energy Deposition
- Magnetopause and Plasma-pause Locations
- Ring Current Ion Flux
Identify Users and Define User Needs (Parallel Efforts in DoD)
- NASA Manned Space Mission
- NASA Low-Earth-Orbit Satellites
- Electric Power Companies
- FAA Navigation
- Global Telecommunications
- Global Navigation

Requirement Areas
- Orbital Drag
- Ionospheric Effects and Scintillation
- Satellite Design and Anomaly Resolution

NPOESS Measurement Requirements
- Auroral Boundary: In-situ Plasma Temperature
- Auroral Energy Deposition: Ionospheric Scintillation
- Auroral Imagery: Neutral Density Profile
- Electric Field: Medium Energy Charged Particles
- Electron Density Profile: Energetic Ions
- Geomagnetic Field: Supra-thermal to Auroral Energy Particles
- In-situ Plasma Fluctuations: Neutral Winds
Future Data: COSMIC
(Constellation Observing System for Meteorology, Ionosphere, and Climate)
Measurements of TEC and Electron Density Profiles

An international (NSPO (Taiwan), UCAR, JPL) fleet of
8 low-Earth-orbit spacecraft with GPS receivers to be
launched in 2001

• Using occultation of the GPS signal as it passes through the ionosphere, height profiles of electron densities will be obtained.

• During a 24 hour period, 8 spacecraft will obtain 4014 ionospheric soundings

• Data products will be global Total Electron Content (TEC) and Electron Density Profiles

24HR GPS/MET soundings (4014) with 8 LEO's
THE FUTURE:

Data Assimilation Approach for Ionospheric Products

Observations

- Solar EUV or F10.7 Proxy
- Kp Magnetometer NOAA/TIROS
- NOAA CORS GPS TEC COSMIC
- DISS DMSP

Products

- Previous Forecast of Ionospheric Conditions
 - Assimilation of Available Driving Parameters and Ionospheric Observations
 - Forecast Input Conditions
 - Forecast of Ionospheric Conditions
 - Ionospheric Specification Products
 - Ionospheric Forecast Products
An Example of Model Implementation
Coupled Thermosphere-Ionosphere Model (CTIM)

- Solar EUV, UV
- Magnetosphere Electric Fields
 - Auroral Particles
- Lower Atmospheric Tides
- Coupled Thermosphere Ionosphere Model
 - Neutral Winds
 - Composition
 - Temperatures
 - Density
- Thermosphere
 - Ion/Electron Density
 - Total Electron Content
 - Ion Temperatures
 - Ion Drifts
- Ionosphere
- Specification Forecast
- Product Areas
 - Communications
 - Navigation
 - Satellite Drag
Product:
Ionospheric Variability Maps

- Hourly maps of ionospheric variability created from modeled predictions
- Shows the deviation from the average quiet condition
- Can be easily modified to a number of specific applications such as GPS position errors
- Similar maps of NmF2 can be used to produce HF propagation predictions
Product:
Equatorial Scintillation Forecast

Problem:
- Ionospheric irregularities near the magnetic equator produce some of the largest errors in the GPS signals. These irregularities are quite sporadic.

Solution:
- Nightly predictions of scintillation based on ground-based ionospheric digital sounders to measure the post-sunset upward drift of the ionosphere.
- The faster the upward drift of the ionosphere, the more likely scintillation will occur.

Product:
- The S4 index - a measure of scintillation activity
- Presented as **Red-Yellow-Green** Alert/Warning
WHAT NASA CAN PROVIDE

• Satellites in equatorial, C/NOFS (Communication/Navigation Outage Forecast System) type orbits, with sensors to understand, specify and forecast, at all longitudes, ionospheric scintillation activity

• COSMIC-type GPS receivers in Low Earth Orbit (LEO) providing near real-time electron density profiles, globally, for ionospheric data assimilation models

• Critical ionospheric observations for model validation
WHAT LWS SHOULD PROVIDE

- Provide state-of-the-art assimilation models with sufficient, near real-time data from sensors such as ionospheric imagers and COSMIC-type GPS receivers.

- Development of a global, ionospheric TEST-BED model capable of SIMULATING ground-based and satellite-borne sensor observations for all levels of geomagnetic and solar activity conditions.